

A Metrologia da Transferência de Custódia de Petróleo e seus Derivados Líquidos: do fornecedor ao cliente

ROTEIRO

- Incerteza na calibração de transmissores, provador e turbina;
- Incerteza do volume totalizado pela EMED;
- Incerteza do volume deslocado em tanque;
- Incerteza na calibração de ultra-som;
- Aplicação da técnica de reconciliação de dados em uma movimentação.

O objetivo deste trabalho é evidenciar metrologicamente como são tratados os sistemas de medição da PETROBRAS TRANSPORTE, a fim de minimizar desgastes entre fornecedor e cliente.

Calibração de transmissores

- Procedimento padronizado corporativo;
- Avaliação de incerteza;
 - Certificado de calibração do padrão (RBC);
 - Resolução do padrão e transmissor;
 - Desvio-padrão;
 - Erro sistemático remanescente;
 - Histerese.
- Critério de aceitação estabelecido baseado na Portaria 064 (Classe 0.3: ± 0,3°C; ± 0,0010 g/cm³ e ± 50 kPa).

Calibração do provador

Principais fontes de incerteza	Distribuição	Contribuição
Vaso padrão	Normal	55,6%
Repetitividade	Normal	43,8%
Fator de corr. de temperatura do vaso padrão (CTS ₁)	Normal	0%
Fator de corr. de temperatura do provador (CTS ₂)	Normal	0%
Fator de correção por deformação elástica do material do provador devido à pressão interna (CPS)	Normal	0%
Fator de correção devido à compressibilidade da água (CPL)	Normal	0%
Fator de corr. de temperatura entre provador e vaso padrão (CTDW)	Normal	0%

Calibração da turbina

Principais fontes de incerteza	Distribuição	Contribuição
Volume do provador a 15.C	Normal	4,82%
Repetitividade do MF	Normal	22,72%
Fator de correção de temp. do provador (CTSp)	Normal	2,66%
Fator de correção de pressão do provador (CPSp)	Normal	0,01%
Fator de corr. de temp. do fluido no provador (CTLp)	Normal	34,77%
Fator de corr. de pressão do fluido no provador (CPLp)	Normal	0,01%
Número de pulsos do medidor (Np)	Normal	0,20%
Fator K do medidor (Kn)	Retangular	0%
Fator de corr. de temp. do fluido no medidor (CTLm)	Normal	34,80%
Fator de corr. de pressão do fluido no medidor (CPLm)	Normal	0,01%

Incerteza máxima: 0,20%

Volume totalizado pela EMED

Principais fontes de incerteza	Distribuição	Contribuição
Meter factor (MF)	Normal	62%
Fator de correção do efeito da temperatura (CTL)	Normal	35%
Fator de correção do efeito da pressão (CPL)	Normal	0%
Correção de volume para 20.C (Ct,20)	Normal	3%
Número de pulsos (Np)	Retangular	0%
Fator k (k)	Normal	0%

Incerteza máxima: 0,30%

Volume deslocado no tanque

Principais fontes	Distribuição	Incerteza
Massa específica	Normal	± 0,0020 g/cm ³
Temperatura do líquido no tanque	Retangular	± 5 .C
Certificado de arqueação do INMETRO	Normal	± 0,2%

Incerteza de medição no tanque: ± 0,58 %

% Volume deslocado no tanque	Incerteza de medição, %
100,00	0,58
88,79	0,65
77,61	0,76
55,21	1,15
32,82	2,12
21,62	3,40
16,03	4,72
10,43	7,47
4,83	16,65

Calibração do ultra-som

- Cálculo de fator e calibração de medidor ultra-sônico e operacional tendo como referência o tanque;
- Cálculo de fator e calibração de medidor ultra-sônico e operacional tendo como referência a EMED.

RECONCILIAÇÃO DE DADOS

Os dados estão "brigados" e precisam ser reconciliados?

Técnica que permite que as medições obtidas sejam ajustadas de modo a atender uma restrição de processo (balança de massa ou energia).

RECONCILIAÇÃO DE DADOS

Agregar qualidade à informação.

$$F = (\underline{x}^{M} - \underline{x})^{T} V^{-1} (\underline{x}^{M} - \underline{x})$$

Erros aleatórios normalmente distribuídos.

 Aplicação on line: acompanhamento de calibrações e/ou vazamentos;


Aplicação off line: fechamento de balanço.

MELHORA O SISTEMA DE MEDIÇÃO COMO UM TODO

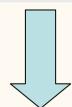
N medições ("redundâncias%»

Modelo do processo:

$$m_1 = m_2 = m_3 = \dots = m_N$$

$$\min F = (\mathbf{x}^{\mathbf{M}} - \mathbf{x})^{\mathrm{T}} \mathbf{V}^{-1} (\mathbf{x}^{\mathbf{M}} - \mathbf{x})$$

Vetor medições:


$$\mathbf{x^{M}} = egin{bmatrix} m_1^{meas} \ m_2^{meas} \ \vdots \ m_N^{meas} \end{bmatrix}$$

Valores reconciliados satisfazendo o modelo de processo:

$$\mathbf{x} = egin{bmatrix} m_1^{rec} \ m_2^{rec} \ \vdots \ m_N^{rec} \end{bmatrix} = egin{bmatrix} m_1^{rec} = m^{rec} \ m_2^{rec} = m^{rec} \ \vdots \ m_N^{rec} = m^{rec} \end{bmatrix} = egin{bmatrix} m^{rec} \ m^{rec} \ \vdots \ m^{rec} \ \end{bmatrix}$$

$$\min F = (\mathbf{x}^{\mathbf{M}} - \mathbf{x})^{\mathrm{T}} \mathbf{V}^{-1} (\mathbf{x}^{\mathbf{M}} - \mathbf{x})$$

$$F = \begin{bmatrix} m_1^{meas} - m_1^{rec} \\ m_2^{meas} - m_2^{rec} \\ \vdots \\ m_N^{meas} - m_N^{rec} \end{bmatrix}^T \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_N^2 \end{bmatrix}^{-1} \begin{bmatrix} m_1^{meas} - m_1^{rec} \\ m_2^{meas} - m_2^{rec} \\ \vdots \\ m_N^{meas} - m_N^{rec} \end{bmatrix}$$

$$F = \left[\frac{\left(m_1^{meas} - m_1^{rec} \right)^2}{\sigma_1^2} + \frac{\left(m_2^{meas} - m_2^{rec} \right)^2}{\sigma_2^2} + \dots + \frac{\left(m_N^{meas} - m_N^{rec} \right)^2}{\sigma_N^2} \right]$$

Para o modelo, o problema de minimização tem solução analítica:

$$\min \mathbf{F} \Rightarrow \frac{\partial \mathbf{F}}{\partial m^{rec}} = 0$$

$$\frac{\partial F}{\partial m^{rec}} = \left[-\frac{2 \cdot \left(m_1^{meas} - m^{rec} \right)}{\sigma_1^2} - \frac{2 \cdot \left(m_2^{meas} - m^{rec} \right)}{\sigma_2^2} - \dots - \frac{2 \cdot \left(m_N^{meas} - m^{rec} \right)}{\sigma_N^2} \right] = 0$$

A medida reconciliada é:

$$m^{rec} = \frac{\frac{m_1^{meas}}{\sigma_1^2} + \frac{m_2^{meas}}{\sigma_2^2} + \dots + \frac{m_N^{meas}}{\sigma_N^2}}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} + \dots + \frac{1}{\sigma_N^2}}$$

Com N = 3, assume a seguinte incerteza padrão:

$$u_{m^{rec}}^{2} = \left(\frac{\sigma_{2}^{2}\sigma_{3}^{2}}{\sigma_{2}^{2}\sigma_{3}^{2} + \sigma_{1}^{2}\sigma_{3}^{2} + \sigma_{1}^{2}\sigma_{2}^{2}}u_{m_{1}^{meas}}\right)^{2} + \left(\frac{\sigma_{1}^{2}\sigma_{3}^{2}}{\sigma_{2}^{2}\sigma_{3}^{2} + \sigma_{1}^{2}\sigma_{3}^{2} + \sigma_{1}^{2}\sigma_{3}^{2} + \sigma_{1}^{2}\sigma_{3}^{2}}u_{m_{2}^{meas}}\right)^{2} + \left(\frac{\sigma_{1}^{2}\sigma_{2}^{2}}{\sigma_{2}^{2}\sigma_{3}^{2} + \sigma_{1}^{2}\sigma_{3}^{2} + \sigma_{1}^{2}\sigma_{3}^{2} + \sigma_{1}^{2}\sigma_{3}^{2}}u_{m_{3}^{meas}}\right)^{2}$$

Para variâncias iguais:
$$\sigma_1^2 = \sigma_2^2 = \dots = \sigma_N^2$$

$$m^{rec} = \frac{m_1^{meas} + m_2^{meas} + \dots + m_N^{meas}}{N}$$

$$u_{m^{rec}} = \frac{u_{m_i^{meas}}}{\sqrt{N}}$$

Para N = 2 (dois medidores): $m_1 = m_2$

Relação entre variâncias	Medida reconciliada	Incerteza minimizada
$\sigma_1^2 = \sigma_2^2$	$m^{rec} = \frac{m_1^{meas} + m_2^{meas}}{2}$	$u_{m^{rec}} = 0.71 \cdot u_{m_1^{meas}}$
$2\sigma_1^2=\sigma_2^2$	$m^{rec} = \frac{2m_1^{meas} + m_2^{meas}}{3}$	$u_{m^{rec}} = 0.82 \cdot u_{m_1^{meas}}$
$4\sigma_1^2 = \sigma_2^2$	$m^{rec} = \frac{4m_1^{meas} + m_2^{meas}}{5}$	$u_{m^{rec}} = 0.89 \cdot u_{m_1^{meas}}$
$8\sigma_1^2 = \sigma_2^2$	$m^{rec} = \frac{8m_1^{meas} + m_2^{meas}}{9}$	$u_{m^{rec}} = 0.94 \cdot u_{m_1^{meas}}$
$\infty \sigma_1^2 \cong \sigma_2^2$	$m^{rec} \cong m_1^{meas}$	$u_{m^{rec}} \cong u_{m_1^{meas}}$
$n_1\sigma_1^2=n_2\sigma_2^2$	$m^{rec} = \frac{n_1 m_1^{meas} + n_2 m_2^{meas}}{n_1 + n_2}$	$u_{m^{rec}} = \frac{\sqrt{n_1^2 u_{m_1^{meas}}^2 + n_1 n_2 u_{m_1^{meas}}^2}}{n_1 + n_2}$

Modelo Proposto

Modelo Proposto

	Volume, m ³	Incerteza, %
Tanque	1005	0,58
EMED	1000	0,30
Ultra-som	990	0,50

O volume reconciliado é de 999 m³, com uma incerteza de medição minimizada de 0,24%.

CONCLUSÃO

- A fim de melhorar a incerteza de medição com tanques, recomenda-se que se tenha uma melhor homogeneização do líquido no seu interior, que se utilize quase que a totalidade do seu volume durante a transferência, que a medição de nível pelo ENRAF seja periodicamente checada com a trena, bem como se estabeleça, junto ao INMETRO, critérios mais rígidos na arqueação do mesmo.
- Quanto à medição de turbina com provador, recomendase o acompanhamento do fator da turbina, através de cartas de controle.

CONCLUSÃO

■ Recomenda-se que tanto o acompanhamento "on line" de erros sistemáticos, quanto o erro máximo admissível entre sistemas de medição sejam baseados na técnica de Reconciliação de Dados, em substituição a valores históricos.

ELCIO CRUZ DE OLIVEIRA PETROBRAS TRANSPORTE S.A. 21 32119223 elciooliveira@petrobras.com.br